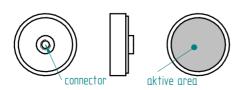
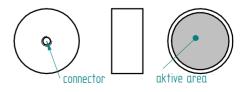
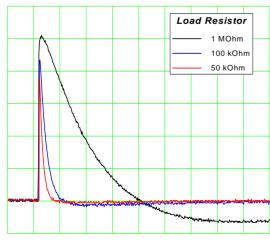
OEM PES

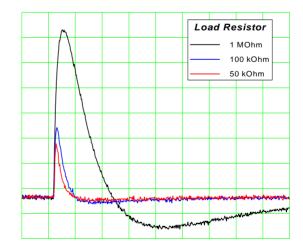
The main application for this type of sensor is energy monitoring of high repetition rate lasers. The co-axially built sensors have a high sensitivity and can be applied in a wide spectral range.


Detector diameters between 4 mm and 45 mm are available. The maximum repetition rate depends on the sensor diameter and the load resistor; values up to 3000 pps. are possible. For these sensors 3 absorber coatings are available:


- organic black, flat spectral behaviour
- Metallic coating for high repetition rates
- Ceramic coating for highest peak powers

The sensors can easily be combined with own electronics. Additionally we offer our OEM-Pyrobox with RS232 or USB-output.


	PES	PES HR	PES K		
Max. energy density:	150 mJ/cm²	100 mJ/cm ²	up to 1 J/cm²		
Max. power density:	150 mW/cm ²	150 mW/cm ²	500 mW/cm²		
Max. peak power density: (10 ns—pulse)	8 MW/cm²	8 MW/cm²	70 MW/cm²		
Temperature range:	0 40°C	0 40°C	0 70°C		
Spectral range	190 nm 25 μm				
Max. pulse duration	2 ms				
Accuracy		±3%			



Type PES K and HP

	Aperture	Sensitivity	Rep Rate	Dimension (Dia x lengh Conector)
PES 4	4 mm	5001000 V/J at 1 M Ω 130250 V/J at 100 k Ω	80 Hz at 1 M Ω 120 Hz at 100 k Ω	7 x 9,5 mm² M 3
PES 8	8 mm	200500 V/J at 1 M Ω 50200 V/J at 100 k Ω	40 Hz at 1 M Ω 100 Hz at 100 k Ω	11 x 9,5 mm² M 3
PES 11	11 mm	100400 V/J at 1 M Ω 50150 V/J at 100 k Ω	40 Hz at 1 MΩ 80 Hz at 100 kΩ	14 x 9,5 mm ² M 3
PES 21	21 mm	50150 V/J at 1 M Ω 3080 V/J at 100 k Ω	25 Hz at 1 MΩ 50 Hz at 100 kΩ	24 x 9,5 mm² M 4
PES 34	34 mm	40 70 V/J at 1 M Ω 1040 V/J at 100 k Ω	25 Hz at 1 MΩ 80 Hz at 100 kΩ	37 x 10 mm² M 4
PES 20 HP	20 mm	30 50 V/J at 1 M Ω 820 V/J at 100 k Ω	50 Hz at 1 M Ω 150 Hz at 100 k Ω	25 x 12 mm² M 3
PES 45 HP	45 mm	8 15 V/J at 1 MΩ 48 V/J at 100 kΩ	25 Hz at 1 M Ω 100 Hz at 100 k Ω	50 x 13 mm² M 4
HR 4	4 mm	10001500 V/J at 1 M Ω 9001200 V/J at 100 k Ω 9001100 V/J at 50 k Ω	250 Hz at 1 M Ω 2,5 kHz at 100 k Ω 3,3 kHz at 50 k Ω	7 x 9,5 mm² M 3
HR 8	8 mm	700900 V/J at 1 M Ω 400500 V/J at 100 k Ω 300400 V/J at 50 k Ω	150 Hz at 1 M Ω 2 kHz at 100 k Ω 2,5 kHz at 50 k Ω	11 x 9,5 mm² M 3
HR 11	11 mm	400600 V/J at 1 M Ω 400500 V/J at 100 k Ω 300400 V/J at 50 k Ω	250 Hz at 1 M Ω 1,5 kHz at 100 k Ω 2 kHz at 50 k Ω	14 x 9,5 mm² M 3
HR 21	21 mm	150250 V/J at 1 M Ω 100250 V/J at 100 k Ω 100200 V/J at 50 k Ω	50 Hz at 1 M Ω 200 Hz at 100 k Ω 1,4 kHz at 50 k Ω	24 x 9,5 mm² M 4
PES 20 k	20 mm	715 V/J at 1 M Ω 18 V/J at 100 k Ω	50 Hz at 1 MΩ 50 Hz at 100 kΩ	25 x 12 mm² M 3
PES 45K	45 mm	1.54.5 V/J at 1 M Ω 0.41.5 V/J at 100 k Ω	20 Hz at 1 MΩ 50 Hz at 100 kΩ	50 x 13 mm² M 4

HR 11, 500 μ s/div; 5 mV/div; 100 μ J

PEM 11, 1 ms/div; 5 mV/div; 100 μJ